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DEFORMATION CHARACTERISTICS

OF LAMINAR COMPOSITES UNDER NONLINEAR STRAINS

UDC 539.3A. G. Kolpakov1 and S. I. Rakin2

It is shown that the type of governing relations in a composite can change, namely, a laminar com-
posite formed by layers of physically linear materials under nonlinear strains should be described by
nonlinear Hooke’s law. Local stresses can be not proportional to elastic constants of the layers under
nonlinear strains.

Key words: laminar composites, macroscopic properties, nonlinear strains.

Formulation of the Problem. Composites can possess macroscopic properties different from the prop-
erties of their constituents [1]. Examples of qualitative changes in composite properties, however, are few [2–4].
We consider a specimen of a laminar material of unit thickness (Fig. 1a) and the corresponding specimen of a
homogeneous material (Fig. 1b). The requirement of infinite extension of the specimens along the x1 and x2 axes
eliminates the problem of the edge effect. Let these specimens have identical strains “as a whole”. We calculate
their responses to these strains by determining the forces at the specimen boundaries. Our objective is to introduce
the governing equations for the homogeneous specimen so that both specimens have identical responses to identical
strains. We consider specimens infinite in the plane Ox1x2 (to avoid problems associated with edge effects) and
extended from 0 to 1 along the Ox3 axis.

Obtaining Averaged Governing Equations. For the homogeneous specimen, we consider the displace-
ments

u1 = v11x1 + v12x2 + v13x3,

u2 = v12x1 + v22x2 + v23x3, u3 = v13x1 + v23x2 + v33x3,
(1)

which satisfy the equilibrium equations for the homogeneous body and, for various vij , correspond to all types of
basis deformations (extension along the axes and shear). We consider deformation of the laminar specimen with
displacements (1) identical to those in the homogeneous specimen set on its boundary x3 = 0 and x3 = 1. We
seek the solution of the problem of the elasticity theory in the form of a sum of homogeneous displacements (1)
(deformations of the homogeneous specimen) and local displacements vi(x3), which do not alter strains “as a whole”:

U1 = v11x1 + v12x2 + v13x3 + v1(x3),

U2 = v12x1 + v22x2 + v23x3 + v2(x3), U3 = v13x1 + v23x2 + v33x3 + v3(x3).
(2)

For displacements (1) and (2) at the specimen boundaries to be identical, the functions v1, v2, and v3 should
vanish at x3 = 0 and x3 = 1:

vi(0) = vi(1) = 0, i = 1, 2, 3. (3)
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Fig. 1

We require satisfaction of equilibrium equations of the elasticity theory (we use nonlinear equations of the
elasticity theory written in a nondeformed coordinate system):

(σnk(δαk + Uα,k)),n = 0, n, α, k = 1, 2, 3. (4)

We verify that functions of the form (2) can satisfy the equilibrium equations (4). We consider the nonlinear
strains

εij = (ui,j + uj,i + uk,iuk,j)/2. (5)

The strains of the composite calculated by formulas (2) and (5) have the form

ε11 = v11 + (v2
11 + v2

12 + v2
13)/2, ε12 = v12 + (v11v12 + v12v22 + v13v23)/2,

ε13 = v′
1/2 + v13 + (v11v13 + v12v23 + v13v33 + v′

1v11 + v′
2v12 + v′

3v13)/2,

ε12 = ε21, ε22 = v22 + (v2
12 + v2

22 + v2
23)/2, ε13 = ε31, ε23 = ε32, (6)

ε23 = v′
2/2 + v23 + (v12v13 + v22v23 + v23v33 + v′

1v12 + v′
2v22 + v′

3v23)/2,

ε33 = v′
3 + v33 + (v2

13 + v2
23 + v2

33 + v′2
1 + v′2

2 + v′2
3 )/2 + v′

1v13 + v′
2v23 + v′

3v33

(the prime denotes derivatives with respect to x3).
We denote the strains of the homogeneous body calculated by formulas (1) and (5) as ε∗ij :

ε∗11 = ε11, ε∗12 = ε12, ε∗13 = v13 + (v11v13 + v12v23 + v13v33)/2,

ε∗21 = ε21, ε∗22 = ε22, ε∗23 = v23 + (v12v13 + v22v23 + v23v33)/2, (7)

ε∗31 = ε31, ε∗32 = ε32, ε∗33 = v33 + (v2
13 + v2

23 + v2
33)/2.

The values of ε∗ij determined by formulas (7) are nonlinear strains “as a whole.” They should be identical for the
laminar and homogeneous bodies.

The following procedure is useful for solving the problem. We consider the products ε∗kiv
′
i:

ε∗kiv
′
i = vkiv

′
i + vkjvjiv

′
i (summation over j). (8)

Since v′
j are of the same order as ε∗ij and vij , we can omit terms higher than those of the second order in Eqs. (8)

as being small; then, the following equalities are valid:

ε∗kiv
′
i = vkiv

′
i. (9)
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Using equalities (9), we can write Eq. (6) in the form

ε11 = ε∗11, ε12 = ε∗12, ε13 = ε∗13 + v′
1/2 + (ε∗11v

′
1 + ε∗12v

′
2 + ε∗13v

′
3)/2,

ε22 = ε∗22, ε21 = ε∗12, ε23 = ε∗23 + v′
2/2 + (ε∗12v

′
1 + ε∗22v

′
2 + ε∗23v

′
3)/2, (10)

ε33 = ε∗33 + v′
3 + ε∗13v

′
1 + ε∗23v

′
2 + ε∗33v

′
3 + (v′2

1 + v′2
2 + v′2

3 )/2.

Hence, we can express the nonlinear local strains εik in the laminar composite via the nonlinear strains ε∗ik “as a
whole” and the derivatives of the local displacements v′

i.
We consider layers of physically linear materials. For these materials, Hooke’s law in the nondeformed

coordinate system is

σ11 = (λ + 2µ)ε11 + λ(ε22 + ε33) = (λ + 2µ)ε∗11 + λε∗22

+ λ(ε∗33 + v′
3 + ε∗13v

′
1 + ε∗23v

′
2 + ε∗33v

′
3) + λ(v′2

1 + v′2
2 + v′2

3 )/2,

σ22 = (λ + 2µ)ε22 + λ(ε11 + ε33) = (λ + 2µ)ε∗22 + λε∗11 (11)

+ λ(ε∗33 + v′
3 + ε∗13v

′
1 + ε∗23v

′
2 + ε∗33v

′
3) + λ(v′2

1 + v′2
2 + v′2

3 )/2,

σ12 = 2µε12, σ13 = 2µε13, σ21 = σ12, σ23 = 2µε23,

σ31 = σ13, σ33 = λ(ε11 + ε22) + (λ + 2µ)ε33,

where σij are the stresses in the nondeformed coordinate system.
Let us consider the equilibrium equations. Since all functions depend only on one variable x3, the equilibrium

equations (4) acquire the form

(σnk(δαk + U ′
α))′ = 0. (12)

Equations (12) yield the equalities

σ13(1 + ε∗11) + σ23ε
∗
12 + σ33(ε∗13 + v′

1) = C13 = const,

σ13ε
∗
12 + σ23(1 + ε∗22) + σ33(ε∗23 + v′

2) = C23 = const, (13)

σ13ε
∗
13 + σ23ε

∗
23 + σ33(1 + ε∗33 + v′

3) = C33 = const.

The quantities Ci3 have the meaning of stresses with the subscripts i3 and 3i in the deformed coordinate system
(“true stresses”).

Substituting strains (10) into the system of Hooke’s law (11), we obtain

σ13 = 2µε∗13 + µv′
1 + µ(ε∗11v

′
1 + ε∗12v

′
2 + ε∗13v

′
3),

σ23 = 2µε∗23 + µv′
2 + µ(ε∗12v

′
1 + ε∗22v

′
2 + ε∗23v

′
3), (14)

σ33 = λ(ε∗11 + ε∗22) + (λ + 2µ)[ε∗33 + v′
3 + ε∗13v

′
1 + ε∗23v

′
2 + ε∗33v

′
3 + (v′2

1 + v′2
2 + v′2

3 )/2].

We introduce the notation

A =
µ

λ + 2µ
, B =

λ

λ + 2µ
, q1 =

C13

µ
, q2 =

C23

µ
,

p1 =
C13

λ + 2µ
, p2 =

C23

λ + 2µ
, p3 =

C33

λ + 2µ
.

(15)

Note, the quantities introduced in (15) are functions of the variable x3.
Substituting (14) into (13), with allowance for notation (15), we obtain the following relations:

2Aε∗13 + Av′
1 + ε∗11v

′
1 + 2Aε∗12v

′
2 + (A + 1)ε∗13v

′
3 + ε∗13ε

∗
33 + ε∗33v

′
1 + v′

1v
′
3

+ ε∗11ε
∗
13 + Bε∗13ε

∗
22 + Bε∗22v

′
1 + 2Aε∗12ε

∗
23 = p1,
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2Aε∗23 + Av′
2 + ε∗22v

′
2 + 2Aε∗12v

′
1 + (A + 1)ε∗23v

′
3 + ε∗23ε

∗
33 + ε∗33v

′
2 + v′

2v
′
3 (16)

+ ε∗22ε
∗
23 + Bε∗23ε

∗
11 + Bε∗11v

′
2 + 2Aε∗12ε

∗
13 = p2,

Bε∗11 + Bε∗22 + ε∗33 + v′
3 + (A + 1)ε∗13v

′
1 + (A + 1)ε∗23v

′
2 + 3ε∗33v

′
3 + (v′2

1 + v′2
2 + v′2

3 )/2

+ 2Aε∗223 + 2Aε∗213 + Bε∗11ε
∗
33 + Bε∗22ε

∗
33 + Bε∗11v

′
3 + Bε∗22v

′
3 + ε∗233 + v′2

3 = p3.

System (16) relates the derivatives of the local displacements v′
i with strains “as a whole” ε∗ij . We resolve

Eq. (16) with respect to v′
i [with respect to these variables, Eq. (16) is a system of three nonlinear algebraic

equations]. From the first two equations, we express v′
1 and v′

2 as functions of v′
3:

v′
1 = p1/A − 2ε∗13 + ε∗13(ε

∗
11 + ε∗33)/A − 2ε∗12ε

∗
23 + Bε∗13ε

∗
22/A

− 2ε∗12v
′
2 + (1/A − 1)ε∗13v

′
3 − p1(ε∗11 + ε∗33 + Bε∗22 + v′

3)/A
2,

v′
2 = p2/A − 2ε∗23 + ε∗23(ε

∗
22 + ε∗33)/A − 2ε∗12ε

∗
13 + Bε∗11ε

∗
23/A (17)

− 2ε∗12v
′
1 + (1/A − 1)ε∗23v

′
3 − p2(Bε∗11 + ε∗33 + ε∗22 + v′

3)/A
2.

Since v′
1 and v′

2 are included into the third equation of (16) in combinations with ε∗ij , we can eliminate terms
of the second order of smallness in (17), because, together with ε∗ij , they produce quantities of the third order. As
a result, we obtain

v′
1 = p1/A − 2ε∗13, v′

2 = p2/A − 2ε∗23. (18)

Substituting these values of v′
1 and v′

2 into the third equation of (16), we obtain the following equation for v′
3:

3v′2
3 /2 + v′

3(1 + 3ε∗33 + Bε∗11 + Bε∗22) + ε∗33 + B(ε∗11 + ε∗22) + Bε∗11ε
∗
33 + Bε∗22ε

∗
33 + ε∗233

− ε∗13q1 − ε∗23q2 + p1ε
∗
13 + p2ε

∗
23 + (q2

1 + q2
2)/2 − p3 − ε∗13q1 − ε∗23q2 = 0. (19)

Equation (19) is a quadratic equation with respect to v′
3. Its solution has the form

v′
3 = −(1/3 + ε∗33 + Bε∗11/3 + Bε∗22/3) + [1 + 3ε∗233 − 4B(ε∗11 + ε∗22) + B2(ε∗211 + 2ε∗11ε

∗
22 + ε∗222)

− 6p1ε
∗
13 − 6p2ε

∗
23 − 3(q2

1 + q2
2) + 6p3 + 6ε∗13q1 + 6ε∗23q2]1/2/3. (20)

The second root is rejected because it is inconsistent with low strains.
Expression (20) is inconvenient for subsequent calculations (because of the radical in this expression). Ne-

glecting terms of the second order, we expand the radical into the Taylor series in the neighborhood of the point
ε∗ij = 0, pi = 0, qi = 0. As a result, we obtain that the radical in (20), with accuracy to second-order small terms,
equals

1 + 3p3 − 2
λ

λ + 2µ
(ε∗11 + ε∗22) −

3
2

q2
1 −

3
2

q2
2 −

9
2

p2
3 +

3
2

ε∗233 −
3
2

λ2

(λ + 2µ)2
(ε∗211 + ε∗222)

− 3ε∗13p1 − 3ε∗23p2 + 6
λ

λ + 2µ
(ε∗11p3 + ε∗22p3) − 3

λ2

(λ + 2µ)2
ε∗11ε

∗
22 + 3ε∗13q1 + 3ε∗23q2.

After that, Eq. (20) acquires the form

v′
3 = −

(1
3

+ ε∗33 +
B

3
ε∗11 +

B

3
ε∗22

)
+

1
3

[
1 + 3p3 − 2

λ

λ + 2µ
(ε∗11 + ε∗22)

− 3
2

q2
1 −

3
2

q2
2 −

9
2

p2
3 +

3
2
ε∗233 −

3
2

λ2

(λ + 2µ)2
(ε∗211 + ε∗222) − 3ε∗13p1 − 3ε∗23p2

+ 6
λ

λ + 2µ
(ε∗11p3 + ε∗22p3) − 3

λ2

(λ + 2µ)2
ε∗11ε

∗
22 + 3ε∗13q1 + 3ε∗23q2

]
. (21)
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Formulas (18) and (21) yield an explicit expression for the derivatives of the local displacements v′
i in terms

of the strains “as a whole” ε∗ij . By virtue of the boundary conditions (3), we have v3(0) = v3(1) = 0. Therefore,

1∫
0

v′
3(x3) dx3 = 0.

We introduce the mean value over the package thickness by the formula

〈f〉 =

1∫
0

f(x3) dx3.

Then, we can write 〈v′
3〉 = 0.

We substitute v′
3 into the last equality according to (21) and replace pi and qi by their expressions in terms

of C13, C23, and C33 according to (15). By averaging the result, we obtain

C33

〈 1
λ + 2µ

〉
= ε∗33 +

〈 λ

λ + 2µ

〉
(ε∗11 + ε∗22) +

1
2

C2
13

〈 1
µ2

〉
+

1
2

C2
23

〈 1
µ2

〉
+

3
2

C2
33

〈 1
(λ + 2µ)2

〉
− 1

2
ε∗233 +

1
2

〈 λ2

(λ + 2µ)2
〉
(ε∗211 + ε∗222) − C13ε

∗
13

〈 1
µ

〉
− C23ε

∗
23

〈 1
µ

〉

+ C13ε
∗
13

〈 1
λ + 2µ

〉
+ C23ε

∗
23

〈 1
λ + 2µ

〉
− 2C33

〈 λ

(λ + 2µ)2
〉
(ε∗11 + ε∗22) +

〈 λ2

(λ + 2µ)2
〉
ε∗11ε

∗
22. (22)

From the equality 〈v′
1〉 = 0, in a similar manner, we obtain

C13

〈 1
µ

〉
= 2ε∗13 + 2ε∗11C13

〈 1
µ

〉
− 2ε∗11ε

∗
13 −

〈 λ

λ + 2µ

〉
ε∗13(ε

∗
22 + ε∗11) + 2ε∗12C23

〈 1
µ

〉
+ ε∗13C33

〈 1
λ + 2µ

〉
− 2ε∗12ε

∗
23 − ε∗13ε

∗
33 − ε∗13C33

〈 1
µ

〉
+ C13C33

〈 1
µ2

〉
. (23)

From the equality 〈v′
2〉 = 0, we obtain

C23

〈 1
µ

〉
= 2ε∗23 + 2ε∗12C13

〈 1
µ

〉
− 2ε∗12ε

∗
13 −

〈 λ

λ + 2µ

〉
ε∗23(ε

∗
22 + ε∗11)

+ ε∗23C33

〈 1
λ + 2µ

〉
+ 2ε∗22C23

〈 1
µ

〉
− 2ε∗22ε

∗
23 − ε∗23ε

∗
33 − ε∗23C33

〈 1
µ

〉
+ C23C33

〈 1
µ2

〉
.

We represent the local stresses Cni in the deformed coordinate system in the form [5] C loc
ni = σnk(δik +Ui,k).

In particular, the following equalities are valid:

C loc
11 = σ11 + σ11U1,1 + σ12U1,2 + σ13U1,3,

C loc
12 = σ12 + σ11U2,1 + σ12U2,2 + σ13U2,3, C loc

22 = σ22 + σ21U2,1 + σ22U2,2 + σ23U2,3.
(24)

We average the local values C loc
ij (24). With allowance for (2), we obtain

C11 = 〈C loc
11 〉 = σ̄11(1 + ε∗11) + σ̄12ε

∗
12 + σ̄13ε

∗
13,

C12 = 〈C loc
12 〉 = σ̄12(1 + ε∗22) + σ̄11ε

∗
12 + σ̄13ε

∗
23, C22 = 〈C loc

22 〉 = σ̄22(1 + ε∗22) + σ̄21ε
∗
12 + σ̄23ε

∗
23.

(25)

We substitute σij according to (11) and Ui according to (2) into (24). Then, we obtain the following
expressions for the local stresses C loc

ij (i, j = 1, 2):

C loc
11 = (λ + 2µ)ε∗11 + λε∗22 + (λ + 2µ)ε∗211 + λε∗11ε

∗
22 + λ

[ C33

λ + 2µ
− λ

λ + 2µ
(ε∗11 + ε∗22)

− C2
33

(λ + 2µ)2
+ C33

λ

(λ + 2µ)2
(ε∗11 + ε∗22) − C13

ε∗13
λ + 2µ

− C23
ε∗23

λ + 2µ

]
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+ C33
λ

λ + 2µ
ε∗11 −

λ2

λ + 2µ
(ε∗11 + ε∗22)ε

∗
11 + 2µε∗212 +

C2
13

µ
− C13ε

∗
13,

C loc
22 = (λ + 2µ)ε∗22 + λε∗11 + (λ + 2µ)ε∗222 + λε∗11ε

∗
22 + λ

[ C33

λ + 2µ
− λ

λ + 2µ
(ε∗11 + ε∗22) (26)

− C2
33

(λ + 2µ)2
+ C33

λ

(λ + 2µ)2
(ε∗11 + ε∗22) − C13

ε∗13
λ + 2µ

− C23
ε∗23

λ + 2µ

]
+C33

λ

λ + 2µ
ε∗22 −

λ2

λ + 2µ
(ε∗11 + ε∗22)ε

∗
22 + 2µε∗212 +

C2
23

µ
− C23ε

∗
23,

C loc
12 = 2µε∗12 + (λ + 2µ)(ε∗11 + ε∗22)ε

∗
12 + ε∗12λ

[ C33

λ + 2µ
− λ

λ + 2µ
(ε∗11 + ε∗22)

]
+

C13C23

µ
− C13ε

∗
23.

We perform averaging in (26) and take into account that 〈C loc
ij 〉 = Cij according to (25). As a result, we

obtain the following equations for σ̄11, σ̄22, and σ̄12:

σ̄11(1 + ε∗11) + σ̄12ε
∗
12 + σ̄13ε

∗
13 = 〈λ + 2µ〉ε∗11 + 〈λ〉ε∗22 + 〈λ + 2µ〉ε∗211 + 〈λ〉ε∗11ε∗22

+
〈 λ

λ + 2µ

〉
σ̄33(1 + ε∗33) −

〈 λ2

λ + 2µ

〉
(ε∗11 + ε∗22) − σ̄2

33

〈 λ

(λ + 2µ)2
〉

+
〈 λ2

(λ + 2µ)2
〉
σ̄33(ε∗11 + ε∗22)

+
〈 λ

λ + 2µ

〉
σ̄33ε

∗
11 − (ε∗11 + ε∗22)ε

∗
11

〈 λ2

λ + 2µ

〉
+ 2〈µ〉ε∗212 + σ̄2

13

〈 1
µ

〉
− σ̄13ε

∗
13,

σ̄22(1 + ε∗22) + σ̄12ε
∗
12 + σ̄23ε

∗
23 = 〈λ + 2µ〉ε∗22 + 〈λ〉ε∗11 + 〈λ + 2µ〉ε∗222 + 〈λ〉ε∗11ε∗22 (27)

+
〈 λ

λ + 2µ

〉
σ̄33(1 + ε∗33) −

〈 λ2

λ + 2µ

〉
(ε∗11 + ε∗22) − σ̄2

33

〈 λ

(λ + 2µ)2
〉

+
〈 λ2

(λ + 2µ)2
〉
σ̄33(ε∗11 + ε∗22)

+
〈 λ

λ + 2µ

〉
σ̄33ε

∗
22 − (ε∗11 + ε∗22)ε

∗
22

〈 λ2

λ + 2µ

〉
+ 2〈µ〉ε∗212 + σ2

23

〈 1
µ

〉
− σ̄23ε

∗
23,

σ̄12(1 + ε∗22) + σ̄11ε
∗
12 + σ̄13ε

∗
23 = 2〈µ〉ε∗12 + 〈λ + 2µ〉(ε∗11 + ε∗22)ε

∗
12

+
〈 λ

λ + 2µ

〉
ε∗12σ̄33 − (ε∗11 + ε∗22)ε

∗
12

〈 λ2

λ + 2µ

〉
+ σ̄13σ̄23

〈 1
µ

〉
− σ̄13ε

∗
23.

Substituting the values of C13, C23, and C33 from (12) into (22) and (23), we obtain the following relations
between the stresses σ̄ij in the nondeformed coordinate system and the strains “as a whole” ε∗ij :

0 = −σ̄33

〈 1
λ + 2µ

〉
+ ε∗33 +

〈 λ

λ + 2µ

〉
(ε∗11 + ε∗22)

+
1
2

σ̄13

(
σ̄13

〈 1
µ2

〉
− 2ε∗13

〈 1
µ

〉)
+

1
2
σ̄23

(
σ̄23

〈 1
µ2

〉
− 2ε∗23

〈 1
µ

〉)
+

1
2

[
σ̄2

33

〈 1
(λ + 2µ)2

〉
− 2σ̄33(ε∗11 + ε∗22)

〈 λ

(λ + 2µ)2
〉

+
〈 λ2

(λ + 2µ)2
〉
(ε∗11 + ε∗22)

2 − ε∗233

]
+ σ̄33

[
σ̄33

〈 1
(λ + 2µ)2

〉
− ε∗11

〈 λ

(λ + 2µ)2
〉
− ε∗22

〈 λ

(λ + 2µ)2
〉
− ε∗33

〈 1
λ + 2µ

〉]
,

0 = σ̄13

〈 1
µ

〉
− 2ε∗13 + ε∗11

(
2ε∗13 − σ̄13

〈 1
µ

〉)
− σ̄33

(
σ̄13

〈 1
µ2

〉
− 2ε∗13

〈 1
µ

〉)
(28)

− ε∗13

[
σ̄33

〈 1
λ + 2µ

〉
− ε∗33 − ε∗11

〈 λ

λ + 2µ

〉
− ε∗22

〈 λ

λ + 2µ

〉]
− ε∗12

(
σ̄23

〈 1
µ

〉
− 2ε∗23

)
,
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0 = σ̄23

〈 1
µ

〉
− 2ε∗23 + ε∗22

(
2ε∗23 − σ̄23

〈 1
µ

〉)
− σ̄33

(
σ̄23

〈 1
µ2

〉
− 2ε∗23

〈 1
µ

〉)

− ε∗23

[
σ̄33

〈 1
λ + 2µ

〉
− ε∗33 − ε∗11

〈 1
λ + 2µ

〉
− ε∗22

〈 1
λ + 2µ

〉]
− ε∗12

(
σ̄13

〈 1
µ

〉
− 2ε∗13

)
.

Equations (27) and (28) are the governing equations for the laminar specimen “as a whole,” written in the
nondeformed coordinate system in an implicit form. They relate the stresses σ̄ij in the nondeformed coordinate
system and the strains “as a whole” ε∗ij .

Homogeneous Material. For λ = const and µ = const, the material in each layer is homogeneous, and the
relation between the strain and stress should be linear. Indeed, the averaged law (27), (28) in this case becomes
linear.

Linear Case. For low strains, eliminating second-order terms in Eqs. (27) and (28), we obtain the linear
averaged Hooke’s law. It coincides with the averaged Hooke’s law for the linear-elastic laminar composite [4].

Investigation of Averaged Governing Relations. Equations (27) and (28) relate the averaged stresses
σ̄ij and strains “as a whole” ε∗ij . The strains ε∗ij are calculated by the nonlinear theory [relations (27) and (28) are
Hooke’s law for the laminar package “as a whole”). The local (for each material) Hooke’s law (11) is physically
linear. Law (27) and (28) in the general case is nonlinear, because it is possible to choose λ and µ so that (27), (28)
are not perfect squares.

As an example, we consider the case of uniaxial strain: ε∗33 6= 0, and the remaining ε∗ij = 0. In this case, all
shear stresses σ̄ij , except for σ̄33, equal zero, and only one equation remains from relations (27), (28):

−σ̄33

〈 1
λ + 2µ

〉
+ ε∗33 −

1
2

(
ε∗233 − σ̄2

33

〈 1
(λ + 2µ)2

〉)
+ σ̄33

(
σ̄33

〈 1
(λ + 2µ)2

〉
− ε∗33

〈 1
λ + 2µ

〉)
= 0.

This is a quadratic equation with respect to σ̄33. Solving this equation, we obtain the stress σ̄33 as a function of the
strain ε∗33. The dependence of σ̄33 on ε∗33 is plotted in Figs. 2 and 3 for different composites of two species (curve 1).
The data in Fig. 2 are shown for the following parameters of the layers: E1 = 10, E2 = 110 (109 Pa), ν1 = 0.25,
ν2 = 0.3, and relative thicknesses of the layers h1 = 0.3 and h2 = 0.7. The data in Fig. 3 are given for E1 = 10,
E2 = 110 (109 Pa), ν1 = ν2 = 0.15, and relative thicknesses of the layers h1 = 0.1 and h2 = 0.9. The straight line 2
shows the dependence of σ̄33 on ε∗33 for the linear-elastic composite with the same parameters of the layers (the
dependence was calculated by formulas from [4]).

The calculations show that the dependence σ̄33(ε∗33) almost coincides with the linear Hooke’s law for ε∗ < 0.05
and starts to deviate from the linear law at ε∗ > 0.05; the deviation can reach 10% in the interval 0.05–0.1.
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The deviation from the nonlinear law increases with increasing ratio of Young’s moduli of the layers and
with decreasing thickness of the soft layer. The reason is the high strains in the soft layer.

The observed influence of both material characteristics of the layers and strains on the averaged characteris-
tics of the composites is most obvious in the above-considered case of linear-elastic layers. The effect also holds for
nonlinear-elastic layers. Indeed, the nonlinear stress-strain relations can be approximated by linear relations in the
neighborhood of specified strains, and the effect is valid in this case. If nonzero strains are taken as the specified
strains, the problem of the theory with initial stresses should be averaged [6].

Investigation of Local Stresses. Formulas (26) yield an expression of local stresses via strains “as a
whole”. We consider the case of biaxial strain in the plane of the layers. Let the stresses applied to the composite
have the form C11 6= 0, C22 6= 0, and the remaining stresses be Cij = 0. Averaging (26), in the case of biaxial
strain, we determine the dependence of the mean stresses C11 and C22 on the strains ε∗11 and ε∗22 from the following
system of algebraic equations:

C11 = 〈λ + 2µ〉ε∗11 + 〈λ〉ε∗22 + 〈λ + 2µ〉ε∗211 −
〈 λ2

λ + 2µ

〉
(ε∗11 + ε∗22) + 〈λ〉ε∗11ε∗22 −

〈 λ2

λ + 2µ

〉
(ε∗11 + ε∗22)ε

∗
11,

C22 = 〈λ + 2µ〉ε∗22 + 〈λ〉ε∗11 + 〈λ + 2µ〉ε∗222 −
〈 λ2

λ + 2µ

〉
(ε∗11 + ε∗22) + 〈λ〉ε∗11ε∗22 −

〈 λ2

λ + 2µ

〉
(ε∗11 + ε∗22)ε

∗
22.

(29)

To calculate the local stresses C loc
ij by formulas (26), we have to know ε∗11 and ε∗22, which are found by solving (29)

with respect to these quantities. We seek the solution by expanding into a series in terms of the quantity δ, which
has the order of strain. We retain terms of the series of the second or lower order in terms of δ. The solution has
the form

δ =
C11

〈λ + 2µ − λ2/(λ + 2µ)〉
,

ε∗11 = δ
1 − γt

1 − t2
+ δ2 γ2t − γt2 + γt − 1

(1 − t2)2
, ε∗22 = δ

γ − t

1 − t2
+ δ2 −γ2 − γt2 + t + γt

(1 − t2)2
,

(30)

where γ = C22/C11 and t = 〈λ − λ2/(λ + 2µ)〉/〈λ + 2µ − λ2/(λ + 2µ)〉.
For a composite formed by layers of two materials, we determine the local stresses in each layer as functions

of the mean stresses C11 and C22. Substituting (30) into (26), we obtain the following expressions for C loc
11 and C loc

22 :
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C loc,i
11 =

δ2γ(1 − γ)(1 + t)
(1 − t2)2

{
−

[
λi + 2µi −

λ2
i

λi + 2µi

]
t + λi −

λ2
i

λi + 2µi

}

+
δ

1 − t2

{[
λi + 2µi −

λ2
i

λi + 2µi

]
(1 − γt) +

[
λi −

λ2
i

λi + 2µi

]
(γ − t)

}
,

C loc,i
22 =

δ2(1 − γ)(1 + t)
(1 − t2)2

{[
λi + 2µi −

λ2
i

λi + 2µi

]
t − λi −

λ2
i

λi + 2µi

}
(31)

+
δ

1 − t2

{[
λi + 2µi −

λ2
i

λi + 2µi

]
(γ − t) +

[
λi −

λ2
i

λi + 2µi

]
(1 − γt)

}
(i = 1, 2 are the numbers of the layers).

For C22 6= 0 and C22 6= C11, the local stresses are quadratic functions of the mean stress C11.
The dependences of C loc

11 and C loc
22 on δ in each layer are plotted in Fig. 4 for E1 = 140, E2 = 14, ν1 = 0.1,

ν2 = 0.4, and h = 0.4. Points 1 and 2 refer to C loc
11 in the first and second materials and points 3 and 4 refer to

C loc
22 in the first and second materials, respectively; the solid and dashed curves are graphs of C11 = 〈C loc

11 〉 and
C22 = 〈C loc

22 〉, respectively.
Note, for γ = 0, C loc

11 is not quadratic, whereas C loc
22 is quadratic.

In the linear-elastic composite, the stresses in the layers are proportional to rigidity of the layers and to
mean stresses [1, 4], i.e., for the linear-elastic composite, formulas (31) contain only terms linear with respect to δ.
Appearance of a quadratic term in the nonlinear case means that the distribution of stresses between the composite
layers acquires a qualitatively different character if the strains become high.

The authors are grateful to V. M. Kornev who recommended to analyze local stresses in the layers.
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